

Solute and Reactive Transport Modelling, Taupo NZ

WHY IS THIS COURSE IMPORTANT?

Coupled numerical models that simultaneously account for the quantification of both subsurface fluid flow and biogeochemical processes have become increasingly important tools for interpreting groundwater quality data and processes relevant to natural and contaminated aquifer systems. Solute and reactive transport models help to provide insights into the past and present behaviour of a wide range of groundwater constituents (including organic and inorganic pollutants) and allow to predict future groundwater quality evolution under multiple water quality management scenarios.

WHO SHOULD ATTEND?

The course is designed for environmental consultants, government scientists, researchers and postgraduate students who want to undertake or assess numerical modelling studies of groundwater flow, transport and geochemical reactions as part of their work or research.

Participants will benefit the most from this course if they have a working knowledge of groundwater (flow/transport) processes and at least a basic understanding of geochemical processes. Prior modelling experience is not an absolute requirement but it will increase the benefits from the course significantly.

WHO IS PRESENTING?

The course will be presented by a team of interdisciplinary scientists with longstanding experience in numerical model development and applications. Presenters include

- Doug Kent (US Geological Survey)
- Henning Prommer (University of Western Australia / CSIRO)
- Catherine Moore, Troy Baisden, Mike Toews (GNS Science)

WHAT WILL THE COURSE COVER?

- Major concepts of solute transport and geochemical modelling
- Basic theory of coupled reactive transport modeling.
- Illustrative case studies of reactive transport model applications to a wide range of real-world groundwater quality problems.
- Hands-on experience with the modeling tools MODFLOW, MT3DMS, PHREEQC and PHT3D (which couples MT3DMS and PHREEQC)
- Modelling groundwater age.
- Modelling nitrogen movement in groundwater and how biogeochemical reactions (such as denitrification) affect concentrations.

GROUP DISCOUNTS

If you are a part of an organisation and wish to enrol a group (2 or more) for the course please contact us at enquiries@groundwater.com.au for considerable discount.

Discounts also apply for GNS employees, Hydrosoc members and IAH members.

Email us at enquiries@groundwater.com.au for more information.

COURSE DETAILS

DATE 5-9 September 2016

VENUE GNS Science 114 Karetoto Rd, Wairakei, Taupo, New Zealand

COURSE FEES NZ \$1800.00 AUD \$2000.00 incl GST

GNS staff: 30% off.

Student & Group (2 or more): 20% off. Australian delegates: 20% off.

Hydrosoc & IAH members: 10% off.

Contact enquiries@groundwater.com.au for more information

This includes course notes, classroom teaching, tutorials, morning and afternoon teas and lunches.

Attendees are to arrange their own travel and laptop.

REGISTER AT www.groundwater.com.au

THE UNIVERSITY OF WESTERN AUSTRALIA

Program Solute and Reactive Transport Modelling

GNS Science: 114 Karetoto Rd, Wairakei, New Zealand

Day 1	N	Ionday 5 September 2016
Time	Session	Торіс
0830		Coffee & Registration
0900	1	Welcome, general introduction and course overview
0930	2	Introduction to solute transport modelling I
1030		Morning tea
1100	3	Introduction to solute transport modelling II
1230		Lunch
1330	4	Introduction to MT3DMS: Theoretical background and solution techniques
1400	5	Introduction to the graphical user interface (GUI) ipht3d
1430	6	MT3DMS Exercise: Conservative transport simulation
1500		Afternoon tea
1530	7	MT3DMS Exercise: Conservative transport simulation (continued)
1630	8	Case Study: Solute transport modelling of nitrate in a coupled groundwater and surface water system
17:30		End of Day 1

Program

Solute and Reactive Transport Modelling GNS Science: 114 Karetoto Rd, Wairakei, New Zealand

Day 2	1	uesday 6 September 2016
Time	Session	Торіс
0830	1	Introduction to geochemical modelling
0930	2	Introduction to PHREEQC
1030		Morning tea
1100	3	Mineral dissolution and precipitation
1130	4	PHREEQC Exercises: water composition/mineral dissolution/redox reactions
1230		Lunch
1330	5	Introduction to PHT3D: Coupling of transport and chemistry
1415	6	PHT3D Exercise: Mineral dissolution/precipitation
1500		Afternoon tea
1530	7	PHT3D Exercise: Mineral dissolution/precipitation (continued)
1630	8	Use of nitrogen isotopes as groundwater provenance indicator
17:30		End of Day 2

Program

Solute and Reactive Transport Modelling GNS Science: 114 Karetoto Rd, Wairakei, New Zealand

Day 3 Wednesday 7 September 2016		
Time	Session	Торіс
0830	1	lon exchange: principles, types of exchangers, modeling with PHREEQC
1000	2	Case Study: Ammoniacal liquor contamination at the Rexco site/UK
1030		Morning tea
1100	3	PHT3D Exercise ion exchange: Ammonium plume at the Rexco site/UK
1230		Lunch
1330	4	Surface complexation: theory/types of surface complexation models/model applications
1430	5	Surface complexation modeling with PHREEQC
1500		Afternoon tea
1530	6	Modeling kinetic reactions with PHREEQC: incorporation of kinetic rate expressions
1630	7	PHREEQC Exercise: Kinetically controlled denitrification
1700	8	Modelling of kinetic isotope effects
17:30		End of Day 3

Solute and Reactive Transport Modelling GNS Science: 114 Karetoto Rd, Wairakei, New Zealand Program

Day 4	Tł	nursday 8 September 2016
Time	Session	Торіс
0830	1	Case Studies: Nitrogen dynamics during managed aquifer recharge
0915	2	PHT3D Exercise: Reactive processes during deepwell injection
1030		Morning tea
1100	3	PHT3D Exercise: Reactive processes during deepwell injection (continued)
1130	4	Case Study: Biogeochemical and isotopic dynamics in a nitrate- polluted pyritic aquifer
1230		Lunch
1330	5	PHT3D Exercise: Long-term biogeochemical dynamics in a nitrate-polluted pyritic aquifer – Modelling groundwater age
1400	6	PHT3D Exercise: Long-term biogeochemical dynamics in a nitrate-polluted pyritic aquifer – Reactive processes
1500		Afternoon tea
1530	7	Hydrologic and biogeochemical controls on nitrogen, phosphorus, and other contaminant fluxes at the groundwater/surface-water interface.
1630	8	PHREEQC Exercise: Redox titrations including denitrification and iron reduction: impacts on phosphate and arsenic
17:30		End of Day 4

Program Solute and Reactive Transport Modelling GNS Science: 114 Karetoto Rd, Wairakei, New Zealand

Day 5	Fric	day 9 September 2016
Time	Session	Торіс
0830	1	Model calibration
0915	2	Assessing and quantifying model uncertainty
1030		Morning tea
1100	3	Case Study: Calibrating a nitrate transport model and quantifying model uncertainty.
1130	4	Case Study: Modelling groundwater mean age and distributions of groundwater age.
1230		Lunch
		Team Exercises:
1330	5	Translating groundwater quality data into conceptual and numerical models (Participants are encouraged to bring their own data/problems)
1500		Afternoon tea
1600	6	Team presentations
1630	7	Discussion and close
17:00		End of course